博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
高阶HMM中文分词
阅读量:6277 次
发布时间:2019-06-22

本文共 13814 字,大约阅读时间需要 46 分钟。

模型的建立

一句话中出现的汉字构成观察序列,如“希腊的经济结构较特殊”对应的观察序列O={希,腊,的,经,济,结,构,较,特,殊}。所有观察值的集合至少应该包含训练集和测试集中出现的所有汉字。

状态有4种:B表示词首的汉字;M表示词语中间的汉字;E表示词尾的汉字;S表示单独的汉字构成一个词。

举例:希/B腊/E  的/S  经/B济/M结/M构/E  较/S  特/B殊/E

文本的预处理

语料库用的是使用msr_training.utf8和msr_test.utf8

由于要做分词,我们的观察值是一个一个的汉字,从文本中提前汉字的方法自然是一次读取3个字节。如果文本中含有英文符号、英文字母、阿拉伯数字等对会对提取汉字的工作造成干扰。有一种去除单字节编码字符的方法是:先利用ICTCLAS进行分词和词性标注(wordseg.cpp),然后去除词性以下列字母开关的词(posfilter.cpp):
m:数词,里面通常包含数字
x:字符串,包含英文字母
w:标点符号,可能包含英文标点符号
t:时间,可能包含数字
另外词性为nrf(音译人名,如“阿沛·阿旺晋美”)的词也应该去掉,因为包含一个点。

wordseg.cpp

#include 
#include
#define OS_LINUX#include "ICTCLAS50.h"using namespace std; int main(int argc, char *argv[]){ if (argc < 2) { //命令行中需要给定要处理的文件名 cout << "Usage:command filename" << endl; return 1; } string filename = argv[1]; string outfile = filename + ".ws"; string initPath = "/home/orisun/master/ICTCLAS50_Linux_RHAS_32_C/API"; if (!ICTCLAS_Init(initPath.c_str())) { cout << "Init fails" << endl; return -1; } ICTCLAS_FileProcess(filename.c_str(), outfile.c_str(), CODE_TYPE_UTF8,1); ICTCLAS_Exit(); return 0;}

posfilter.cpp

#include
#include
#include
#include
#include
using namespace std;int main(int argc,char *argv[]){ set
filter_set; filter_set.insert('m'); filter_set.insert('x'); filter_set.insert('w'); filter_set.insert('t'); if(argc<2){ cout<<"usage: "<
<<" inputfile"<
>word){ string::size_type pos=word.find("/"); string post=word.substr(pos+1); char c=post.at(0); if(c=='w') line_out+=" "; if(filter_set.find(c)==filter_set.end() && post!="nrf"){ //词性不在被过滤的集合当中 line_out+=word.substr(0,pos); //对于训练集要追加空格,对测试集不能追加空格 } } ofs<
<

另外由于ICTCKLAS词性标注也不是100%准确,采用上述方法并不能将单字节编码的字符去除干净,在BMES.cpp中会进行最后的检查,找到单字节字符后再手动将其删除即可。

最后请在train文档中手动去除℃和/

BMES.cpp

#include
#include
#include
#include
using namespace std;int main(int argc,char *argv[]){ if(argc<3){ cout<<"Usage: "<
<<" inputfile outputfile"<
>word){ if(word.size()%3!=0){ cout<
<<": "<
<

同样要把train文本和test文本中的所有汉字录入GDBM数据库中,然后对所有汉字标记序号。

train2dict.cpp

#include
#include
#include
#include
#include
#include
#define DB_FILE_BLOCK "dict_db"int main(int argc,char* argv[]){ if(argc<2){ printf("Usage: %s BMES_marked_file.\n",argv[0]); exit(1); } FILE *fp; if((fp=fopen(argv[1],"r"))==NULL){ perror("fopen"); exit(1); } GDBM_FILE dbm_ptr; dbm_ptr = gdbm_open(DB_FILE_BLOCK,0,GDBM_WRCREAT,S_IRUSR | S_IWUSR,NULL); char *v="w"; datum key,value; value.dptr=v; value.dsize=1; char word[3]={0}; char *line=NULL; //循环从输入文件中读取一行,放在line中 ssize_t read=0; size_t needlen=0; char slash='/'; int line_no=0; while((read=getline(&line,&needlen,fp))!=-1){ line_no++; char *begin=line; char *end=NULL; while((end=strchr(begin,slash))!=NULL){ if(end-begin<3){ printf("%d:%s\n",line_no,begin); break; } strncpy(word,end-3,3); key.dptr=word; key.dsize=3; //char tmp[4]={0}; //strncpy(tmp,key.dptr,3); //printf("%s\t",tmp); gdbm_store(dbm_ptr,key,value,GDBM_REPLACE); begin=end+2; } } free(line); fclose(fp); gdbm_close(dbm_ptr); return 0;}

test2dict.cpp

#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;int main(int argc,char* argv[]){ if(argc<2){ cout<<"Usage: "<
<<" inputfile"<
>str){ if(str.size()%3!=0){ cout<<"size="<
<<"\t"<<"|"<
<<"|"<

indexword.cpp

#include
#include
#include
#include
#include
#include
#define DB_FILE_BLOCK "dict_db"int main(int argc,char* argv[]){ GDBM_FILE dbm_ptr; dbm_ptr = gdbm_open(DB_FILE_BLOCK,0,GDBM_WRCREAT,S_IRUSR | S_IWUSR,NULL); datum key,data; long index=0; //从0开始编号 char index_str[10]={0}; for(key=gdbm_firstkey(dbm_ptr);key.dptr;key=gdbm_nextkey(dbm_ptr,key)){ data=gdbm_fetch(dbm_ptr,key); bzero(index_str,sizeof(index_str)); sprintf(index_str,"%ld",index++); data.dptr=index_str; data.dsize=sizeof(index_str); gdbm_store(dbm_ptr,key,data,GDBM_REPLACE); } gdbm_close(dbm_ptr); return 0;}

我处理好的语料库可以在这里下载:

二阶HMM中文分词

利用Maxmum Likelihood学习二阶HMM模型参数

AMatrix.cpp

#include
#include
#include
#include
#include
using namespace std;const int SNUM=4; //SNUM种隐藏状态const char state[SNUM]={'B','M','E','S'};int A1[SNUM][SNUM]; //记录一阶Markov状态转移的次数int A2[SNUM][SNUM][SNUM]; //记录二阶Markov状态转移的次数int PI[SNUM]; //记录各种状态出现的次数inline int stateIndex(char state){ switch(state){ case 'B':return 0; break; case 'M':return 1; break; case 'E':return 2; break; case 'S':return 3; break; default:return -1; break; }}//由于隐藏状态只有4种,训练语料足够多,所有可能的状态转移在训练语料中都会出现,所以不使用任何平滑算法inline void noneturing(const int count[],double prob[],int len){ double total=0.0; for(int i=0;i

gt.h包含Good-Turing平滑算法

#ifndef _HEADER_H#define _HEADER_H#include
#include
#include
using namespace std;void goodturing(const int count[],double prob[],int len){ map
> count_map; //map可以自动按key排好序 int N=0; for(int i=0;i
>::const_iterator itr; itr=count_map.find(c); if(itr==count_map.end()){ list
l; l.push_back(i); count_map[c]=l; } else{ count_map[c].push_back(i); } } if(N==0){ for(int i=0;i
>::const_iterator iter=count_map.begin(); while(iter!=count_map.end()){ double pr; int r=iter->first; int nr=iter->second.size(); if(++iter!=count_map.end()){ int r_new=iter->first; if(r_new=r+1){ int nr_1=iter->second.size(); pr=(1.0+r)*nr_1/(N*nr); } else{ pr=1.0*r/N; } } else{ pr=1.0*r/N; } list
l=(--iter)->second; list
::const_iterator itr1=l.begin(); while(itr1!=l.end()){ int index=*itr1; itr1++; prob[index]=pr; } ++iter; } //概率归一化 double sum=0; for(int i=0;i

BMatrix.cpp

#include
#include
#include
#include
#include
#include
#include"gt.h"#include
#include
const int SNUM = 4;const int ONUM = 4782; //字典数据库中共有ONUM项int B1[SNUM][ONUM]; //记录一阶状态发射的次数int B2[SNUM][SNUM][ONUM]; //记录二阶状态发射的次数GDBM_FILE dbm_ptr;inline int stateIndex(char state){ switch (state) { case 'B': return 0; break; case 'M': return 1; break; case 'E': return 2; break; case 'S': return 3; break; default: return -1; break; }}inline int observIndex(string chinese){ //cout << chinese << endl; datum key, value; key.dptr = const_cast < char *>(chinese.c_str()); key.dsize = 3; value = gdbm_fetch(dbm_ptr, key); int index = atoi(value.dptr); return index;}int main(int argc, char *argv[]){ if (argc < 2) { cout << "usage: " << argv[0] << " inputfile" << endl; return 1; } ifstream ifs(argv[1]); if (!ifs) { cerr << "open file " << argv[1] << " failed." << endl; return 1; } dbm_ptr = gdbm_open("dict_db", 0, GDBM_READER, S_IRUSR | S_IWUSR, NULL); string line; //int line_no = 1; while (getline(ifs, line)) { //cout << line_no++ << endl; string::size_type local; if ((local = line.find("/")) != string::npos) { char s = line.at(local + 1); //第1个状态 string chinese = line.substr(local - 3, 3); //第1个观察值 int j = stateIndex(s); int k = observIndex(chinese); B1[j][k]++; int i; while ((local = line.find("/", local + 1)) != string::npos) { s = line.at(local + 1); //下1个状态 chinese = line.substr(local - 3, 3); //下1个观测值 i = j; j = stateIndex(s); k = observIndex(chinese); B1[j][k]++; B2[i][j][k]++; } } } ifs.close(); gdbm_close(dbm_ptr); ofstream ofs1("B1.mat"); ofstream ofs2("B2.mat"); if (!(ofs1 && ofs2)) { cerr << "create outputfile failed." << endl; return 1; } ofs1 << setprecision(8); ofs2 << setprecision(8); double arr[ONUM] = { 0.0 }; for (int i = 0; i < SNUM; ++i) { goodturing(B1[i], arr, ONUM); for (int j = 0; j < ONUM; ++j) ofs1 << arr[j] << "\t"; ofs1 << endl; } for (int i = 0; i < SNUM; ++i) { for (int j = 0; j < SNUM; ++j) { goodturing(B2[i][j], arr, ONUM); for (int k = 0; k < ONUM; ++k) ofs2 << arr[k] << "\t"; ofs2 << endl; } } ofs1.close(); ofs2.close(); return 0;}

Viterbi算法进行分词

#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;const string DB_FILE_BLOCK="dict_db";GDBM_FILE dbm_ptr;const int SNUM=4; //隐藏状态集合大小const int ONUM=4782; //观察值集合大小/*二阶HMM模型参数*/double PI[SNUM];double A1[SNUM][SNUM];double A2[SNUM][SNUM][SNUM];double B1[SNUM][ONUM];double B2[SNUM][SNUM][ONUM];inline int stateIndex(char state){ switch (state) { case 'B': return 0; break; case 'M': return 1; break; case 'E': return 2; break; case 'S': return 3; break; default: return -1; break; }}inline int observIndex(string chinese){ //cout << chinese << endl; datum key, value; key.dptr = const_cast < char *>(chinese.c_str()); key.dsize = 3; value = gdbm_fetch(dbm_ptr, key); int index = atoi(value.dptr); return index;}/*从文件中读出HMM模型参数*/void initHMM(string f1,string f2,string f3,string f4,string f5){ ifstream ifs1(f1.c_str()); ifstream ifs2(f2.c_str()); ifstream ifs3(f3.c_str()); ifstream ifs4(f4.c_str()); ifstream ifs5(f5.c_str()); if(!(ifs1 && ifs2 && ifs3 && ifs4 && ifs5)){ cerr<<"Open file failed!"<
>word; PI[i]=atof(word.c_str()); } }else{ cerr<<"Read PI failed!"<
>word; A1[i][j]=atof(word.c_str()); } } //读取A2 for(int i=0;i
>word; A2[i][j][k]=atof(word.c_str()); } } } //读取B1 for(int i=0;i
>word; B1[i][j]=atof(word.c_str()); } } //读取B2 for(int i=0;i
>word; B2[i][j][k]=atof(word.c_str()); } } } ifs1.close(); ifs2.close(); ifs3.close(); ifs4.close(); ifs5.close();}/*Viterbi算法进行分词*/void viterbi(string sentence,string &result){ if(sentence.size()==0) return; result.clear(); int time=sentence.size()/3; //观察序列的长度 if(time<3){ //观测序列中只有1个字或2个字,我们认为这就是1个词 result=sentence.append(" "); return; } double ***Q=new double **[SNUM]; //动态申请并初始化Q和Path数组 int ***Path=new int**[SNUM]; for(int i=0;i
max){ max=product; maxindex=i; } } Q[j][k][t]=max*B2[j][k][ot]; Path[j][k][t]=maxindex; } } } //找Q矩阵最后一层的最大值 double max=-1.0; int maxindexi=-1; int maxindexj=-1; for(int i=0;i
max){ max=Q[i][j][time-2]; maxindexi=i; maxindexj=j; } } } //从maxindexj,maxindexi出发,根据Path矩阵找出最可能的状态序列 stack
st; st.push(maxindexj); st.push(maxindexi); for(int t=time-3;t>=0;--t){ int maxindexk=Path[maxindexi][maxindexj][t+1]; st.push(maxindexk); maxindexj=maxindexi; maxindexi=maxindexk; } //释放三维数组 for(int i=0;i

 

一阶HMM中文分词

一阶HMM的模型参数就是二阶HMM模型中的PI、A1、B1。

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;const string DB_FILE_BLOCK="dict_db";const int WORDS_NUM=4782;GDBM_FILE dbm_ptr;double PI[4]; //初始状态概率矩阵double A[4][4]; //状态转移矩阵double B[4][WORDS_NUM]; //发射矩阵/*从文件中读出HMM模型参数*/void initHMM(string f1,string f2,string f3){ ifstream ifs1(f1.c_str()); ifstream ifs2(f2.c_str()); ifstream ifs3(f3.c_str()); if(!(ifs1 && ifs2 && ifs3)){ cerr<<"Open file failed!"<
>word; PI[i]=atof(word.c_str()); } }else{ cerr<<"Read PI failed!"<
>word; A[i][j]=atof(word.c_str()); } } //读取B for(int i=0;i<4;++i){ getline(ifs3,line); istringstream strstm(line); string word; for(int j=0;j
>word; B[i][j]=atof(word.c_str()); } } ifs1.close(); ifs2.close(); ifs3.close();}/*Viterbi算法进行分词*/void viterbi(string sentence,string &result){ if(sentence.size()==0) return; result.clear(); int row=sentence.size()/3; //观察序列的长度 double **Q=new double*[row]; //初始化Q矩阵 for(int i=0;i
(sentence.c_str()); strncpy(chinese,bp,3); //读取句子中的第1个汉字 key.dptr=chinese; key.dsize=3; data=gdbm_fetch(dbm_ptr,key); //从数据库中获取汉字对应的index,该index对应发射矩阵的列 int colindex=atoi(data.dptr); for(int i=0;i<4;++i){ Path[0][i]=-1; Q[0][i]=PI[i]*B[i][colindex]; } //给Q和Path矩阵的后续行赋值 for(int i=1;i
(sentence.c_str()+i*3); strncpy(chinese,bp,3); //读取句子中的下一个汉字 key.dptr=chinese; data=gdbm_fetch(dbm_ptr,key); colindex=atoi(data.dptr); for(int j=0;j<4;++j){ double max=-1.0; int maxindex=-1; for(int k=0;k<4;++k){ double product=Q[i-1][k]*A[k][j]; if(product>max){ max=product; maxindex=k; } } Q[i][j]=max*B[j][colindex]; Path[i][j]=maxindex; } } //找Q矩阵最后一行的最大值 double max=-1.0; int maxindex=-1; for(int i=0;i<4;++i){ if(Q[row-1][i]>max){ max=Q[row-1][i]; maxindex=i; } } //从maxindex出发,根据Path矩阵找出最可能的状态序列 stack
st; st.push(maxindex); for(int i=row-1;i>0;--i){ maxindex=Path[i][maxindex]; st.push(maxindex); } //释放二维数组 for(int i=0;i

对比一下一阶和二阶HMM分词的效果:

左边是二阶,右边是一阶。目测上去似乎是伯仲之间,至少我们写二阶HMM代码的effort并没有paid off。

为了得到精确的数字,我用SCWS分词系统对msr_test进行了分词,以它的结果作为标准答案(即认为SCWS分词精度为100%),用我的HMM分词结果逐字与之对比BMES标记,HMM一阶的精度为:

总共:153769

出错:38330
正确率:0.750729991090532

二阶HMM的分词精度为:

总共:153769

出错:35372
正确率:0.769966638269092

使用CRF++进行分词

使用的template模板为:

U01:%x[0,0]

U02:%x[-1,0]/%x[0,0]
U03:%x[-2,0]/%x[-1,0]/%x[0,0]
U04:%x[0,0]/%x[1,0]
U05:%x[0,0]/%x[1,0]/%x[2,0]

CRF相比于HMM的便利之处就在于你可以任意的定义特征函数。上面template文件中的U02相当于一阶HMM,U03相当于二阶HMM,而U04和U05则认为一个字的tag跟它后面的字也有关系。

训练中一些参数的说明:

ter:迭代次数

terr:标记错误率

serr:句字错误率

obj:当前对象的值。当这个值收敛到一个确定值的时候,训练完成

diff:与上一个对obj之间的相对差

diff非要减小到0.00000CRF++才肯罢休(第92次迭代的时候已经达到了0.00003),迭代次数到达上限105时它终于退出了。

还是以SCWS的分词结果作为标准,CRF++对msr_test的分词准确率为:

总共:153769

出错:17801
正确率:0.884235

下面的awk代码用于统计CRF++的分词准确率

#!/usr/bin/awk -fBEGIN{    total=0;    error=0;}$0!~/^$/{    #不能是空行    total++;    if($2!=$3){        #第2列和第3列不相同        error++;    }}END{    print "总共:" total;    print "出错:" error;    print "正确率:" (1-error/total);}

转载地址:http://mryva.baihongyu.com/

你可能感兴趣的文章
spring jpa 配置详解
查看>>
IOE,为什么去IOE?
查看>>
java 用反射简单应用,将Object简单转换成map
查看>>
Storm中的Worker
查看>>
dangdang.ddframe.job中页面修改表达式后进行检查
查看>>
Web基础架构:负载均衡和LVS
查看>>
Linux下c/c++相对路径动态库的生成与使用
查看>>
SHELL实现跳板机,只允许用户执行少量允许的命令
查看>>
SpringBoot 整合Redis
查看>>
2014上半年大片早知道
查看>>
Android 6.0指纹识别App开发案例
查看>>
正文提取算法
查看>>
轻松学PHP
查看>>
Linux中的网络监控命令
查看>>
this的用法
查看>>
windows下安装redis
查看>>
CentOS7 yum 安装git
查看>>
启动日志中频繁出现以下信息
查看>>
httpd – 对Apache的DFOREGROUND感到困惑
查看>>
分布式锁的一点理解
查看>>